2024
Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2
Fernández S, Assaf E, Ahmad S, Travis B, Curley J, Hazari N, Ertem M, Miller A. Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2. Angewandte Chemie International Edition 2024, 64: e202416061. PMID: 39571086, DOI: 10.1002/anie.202416061.Peer-Reviewed Original ResearchTransfer hydrogenationMethanol synthesisIsopropyl formateReduction of CO2 to methanolCO2 reduction to formateCO2 to methanolHydrogen bonding interactionsReduction to formateFormate to methanolEnergy-dense liquid fuelsRoom temperature reductionMulticatalyst systemsOrganometallic catalystsOrganometallic reactionsFormate ionTrifluoromethanesulfonic acidBonding interactionsFischer esterificationFormate estersIsopropanol solventHydrogenMethanolEster substratesElectrocatalystsEnergy storageRoom‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2
Fernández S, Assaf E, Ahmad S, Travis B, Curley J, Hazari N, Ertem M, Miller A. Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2. Angewandte Chemie 2024, 137 DOI: 10.1002/ange.202416061.Peer-Reviewed Original ResearchTransfer hydrogenationMethanol synthesisIsopropyl formateReduction of CO2 to methanolCO2 reduction to formateCO2 to methanolHydrogen bonding interactionsReduction to formateFormate to methanolEnergy-dense liquid fuelsRoom temperature reductionMulticatalyst systemsOrganometallic catalystsOrganometallic reactionsFormate ionTrifluoromethanesulfonic acidBonding interactionsFischer esterificationFormate estersIsopropanol solventHydrogenMethanolEster substratesElectrocatalystsEnergy storageIs Lipid Metabolism of Value in Cancer Research and Treatment? Part I- Lipid Metabolism in Cancer
Nassar A, Nie X, Zhang T, Yeung J, Norris P, He J, Ogura H, Babar M, Muldoon A, Libreros S, Chen L. Is Lipid Metabolism of Value in Cancer Research and Treatment? Part I- Lipid Metabolism in Cancer. Metabolites 2024, 14: 312. PMID: 38921447, PMCID: PMC11205345, DOI: 10.3390/metabo14060312.Peer-Reviewed Original ResearchMass spectrometryLipid metabolismTherapeutic efficacy of treatmentLipidomic studiesEfficacy of treatmentStudy of lipidsEmergence of lipidomicsLipid categoriesSpectrometryEnergy storageTumor microenvironmentPharmaceutical candidatesTherapeutic efficacyLipidomicsCancer patientsLipid profileCancer samplesCancerLarge-scale studiesCancer researchTargeted approachAlterationsDisease developmentCell growthMetabolismRemodeling of Murine Branch Pulmonary Arteries Under Chronic Hypoxia and Short-Term Normoxic Recovery.
Ramachandra A, Jiang B, Jennings I, Manning E, Humphrey J. Remodeling of Murine Branch Pulmonary Arteries Under Chronic Hypoxia and Short-Term Normoxic Recovery. Journal Of Biomechanical Engineering 2024, 146 PMID: 38421341, DOI: 10.1115/1.4064967.Peer-Reviewed Original ResearchWeeks of hypoxiaBranch pulmonary arteriesWeeks of normoxic recoveryPulmonary arteryEndothelial cell responsesSmooth muscleChronic hypoxiaNormoxic recoveryPulmonary arterial remodelingCell responsesProximal pulmonary arteriesLongitudinal changesHypoxia-induced changesC57BL/6J micePulmonary pathologyThin collagen fibersArterial remodelingBiaxial mechanicsCircumferential stressEnergy storageNormal valuesHypoxiaWeeksVascular adaptationFraction of cytoplasmSalinity gradient energy is not a competitive source of renewable energy
Lin S, Wang Z, Wang L, Elimelech M. Salinity gradient energy is not a competitive source of renewable energy. Joule 2024, 8: 334-343. DOI: 10.1016/j.joule.2023.12.015.Peer-Reviewed Original ResearchSalinity gradient energyGradient energyPressure retarded osmosisLow energy densityRenewable energy sourcesEnergy storageCompetitive source of renewable energySource of renewable energyConversion efficiencyEnergy densityWind energyProcess advancesRenewable energyEnergy sourcesRenewable technologiesEnergy
2021
MYH9 facilitates autoregulation of adipose tissue depot development
Cheung S, Sayeed M, Nakuluri K, Li L, Feldman B. MYH9 facilitates autoregulation of adipose tissue depot development. JCI Insight 2021, 6: e136233. PMID: 33986190, PMCID: PMC8262332, DOI: 10.1172/jci.insight.136233.Peer-Reviewed Original ResearchConceptsMature adipocytesProgenitor cellsModulate systemic metabolismAdipogenesis in vivoPostnatal lifeExtracellular inputsWhite adipose tissueHormone signalingAdipose tissueEarly postnatal lifeDifferentiation of progenitor cellsTissue formation in vivoFormation in vivoEnergy storageSystemic metabolismAdipose depotsAdipocytesMYH9CellsDepot formationTissueAdipose8.22 Oxygen Evolution of Photosystem II
Huang H, Brudvig G. 8.22 Oxygen Evolution of Photosystem II. 2021, 569-588. DOI: 10.1016/b978-0-12-409547-2.14871-1.Peer-Reviewed Original ResearchProtein complex photosystem IIWater oxidation reactionPhotosystem IIWater oxidation mechanismOxygen-evolving complexSolar energy storageNatural photosynthesisKey reactionOxygen evolutionEnergy storageReactionPhotosynthesisCurrent knowledgeDetailed mechanismEssential componentGlobal scaleComplexesMechanism
2020
SAT-585 Autoregulation of Adipose Tissue Development
Feldman B, Sayeed M, Nakuluri K. SAT-585 Autoregulation of Adipose Tissue Development. Journal Of The Endocrine Society 2020, 4: sat-585. PMCID: PMC7209260, DOI: 10.1210/jendso/bvaa046.389.Peer-Reviewed Original ResearchWhite adipose tissueABSTRACT White adipose tissueMature adipocytesProgenitor cellsModulate systemic metabolismPostnatal lifeAdipose depotsAdipogenesis in vivoTissue formation in vivoExtracellular inputsAdipose tissueHormone signalingEnergy storageEarly postnatal lifeDifferentiation of progenitor cellsUnrecognized signalFormation in vivoSystemic metabolismAdipocytesHomeostatic levelsAdipogenesisCellsAdiposeDepot formation
2004
QM/MM Study of Energy Storage and Molecular Rearrangements Due to the Primary Event in Vision
Gascon J, Batista V. QM/MM Study of Energy Storage and Molecular Rearrangements Due to the Primary Event in Vision. Biophysical Journal 2004, 87: 2931-2941. PMID: 15339806, PMCID: PMC1304767, DOI: 10.1529/biophysj.104.048264.Peer-Reviewed Original ResearchConceptsMolecular rearrangementQuantum mechanics/molecular mechanics (QM/MM) hybrid methodsEnergy storageQM/MM studyPolyene chainEnergy storage mechanismElectronic excitation energiesHigh-resolution structural dataBovine visual rhodopsinMolecular structureMM studyNet positive chargePrimary photochemical eventSchiff baseC13 positionSchiff base linkageStorage mechanismSteric interactionsTrans productsSteric constraintsPreferential senseFirst-principles understandingPositive chargePhotochemical eventsStructural data
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply