2025
Molecular mechanism of Arp2/3 complex activation by nucleation-promoting factors and an actin monomer
Iyer S, Wu J, Pollard T, Voth G. Molecular mechanism of Arp2/3 complex activation by nucleation-promoting factors and an actin monomer. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2421467122. PMID: 40048273, PMCID: PMC11912402, DOI: 10.1073/pnas.2421467122.Peer-Reviewed Original ResearchConceptsArp2/3 complexActin monomersNeuronal Wiskott-Aldrich syndrome proteinWiskott-Aldrich syndrome proteinActin filament branchingMammalian Arp2/3 complexArp2/3 complex activationNucleation-promoting factorsActin-related proteinsCA motifsD-loopActin filamentsFilament branchingOrganelle movementBranch formationActive conformationActinMolecular mechanismsArp2/3Binding sitesArp3ProteinPathwayAtomistic molecular dynamics simulationsComplex activity
2024
Bending stiffness of Toxoplasma gondii actin filaments
Cao W, Sladewski T, Heaslip A, De La Cruz E. Bending stiffness of Toxoplasma gondii actin filaments. Journal Of Biological Chemistry 2024, 301: 108101. PMID: 39706262, PMCID: PMC11786770, DOI: 10.1016/j.jbc.2024.108101.Peer-Reviewed Original ResearchConceptsActin filamentsD-loopMechanical properties of actin filamentsFilament subunitsSkeletal muscle actin filamentsProperties of actin filamentsSkeletal muscle actinMuscle actin filamentsFilament length distributionApicomplexan parasite Toxoplasma gondiiIntersubunit salt bridgesOrganelle inheritancePointed-endSubunit interactionsNeighboring subunitUnique assembly propertiesSalt bridgesSubunitFunctional consequencesSubunit dissociationVisible densityActinSubunit incorporationParasite Toxoplasma gondiiFilamentsMechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model
Sakamoto R, Murrell M. Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model. Nature Communications 2024, 15: 9731. PMID: 39523366, PMCID: PMC11551154, DOI: 10.1038/s41467-024-53228-y.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActinsActomyosinAnimalsBiomechanical PhenomenaBiomimeticsCell DivisionModels, BiologicalMyosinsUnilamellar LiposomesConceptsMyosin-induced stressContractile ring assemblyCell division mechanismActin filamentsActin cortexCleavage furrowDivision planeActomyosin flowsGiant unilamellar vesiclesRing assemblyCell divisionMyosin activityContractile ring-like structureShape changesRing-like structureDivision mechanismEnergetic costSymmetric divisionActinRing-like formationCell modelUnilamellar vesiclesIn vitro modelFurrowCellsComposite branched and linear F-actin maximize myosin-induced membrane shape changes in a biomimetic cell model
Sakamoto R, Murrell M. Composite branched and linear F-actin maximize myosin-induced membrane shape changes in a biomimetic cell model. Communications Biology 2024, 7: 840. PMID: 38987288, PMCID: PMC11236970, DOI: 10.1038/s42003-024-06528-4.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActinsActomyosinAnimalsBiomimeticsCell MembraneCell ShapeLiposomesModels, BiologicalMyosinsUnilamellar LiposomesConceptsF-actin networkF-actinF-actin architectureMembrane shape changesCell shape changesActivity of myosinInduce membrane deformationActomyosin contractilityShape changesActin cortexActomyosin cortexGiant unilamellar vesiclesActinMembrane deformationUnilamellar vesiclesCell modelNo-slip boundariesForce generationActomyosinMyosinVesiclesForce transmissionMechanism of phosphate release from actin filaments
Wang Y, Wu J, Zsolnay V, Pollard T, Voth G. Mechanism of phosphate release from actin filaments. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2408156121. PMID: 38980907, PMCID: PMC11260136, DOI: 10.1073/pnas.2408156121.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActinsAdenosine TriphosphateCryoelectron MicroscopyHydrogen BondingMagnesiumMolecular Dynamics SimulationPhosphatesConceptsCryo-EM structureAll-atom molecular dynamics simulationsATP-actinRate of phosphate releaseActin filamentsMechanism of phosphate releaseMolecular dynamics simulationsPhosphate releaseDissociation of phosphateR177Salt bridgesHydrogen bondsEnergy barrierDynamics simulationsComputational studyRelease of phosphateFilamentsRelease pathwayInternal cavityResiduesStudy residuesOccluding interactionsGatePrimary eventD179F-actin architecture determines the conversion of chemical energy into mechanical work
Sakamoto R, Murrell M. F-actin architecture determines the conversion of chemical energy into mechanical work. Nature Communications 2024, 15: 3444. PMID: 38658549, PMCID: PMC11043346, DOI: 10.1038/s41467-024-47593-x.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActinsAdenosine TriphosphateAnimalsBiomechanical PhenomenaHydrolysisMyosin Type IIMyosinsRabbitsConceptsF-actin architectureF-actinATP consumption rateF-actin bundlesIn vitro reconstitutionDynamic cellular processesHigher ATP consumptionActin cytoskeletonFilamentous actinMyosin motorsCellular processesATP hydrolysisPurified componentsAdenosine triphosphateForce generationConversion of chemical energyATP consumptionConsumption rateActinChemical energyMyosinNetwork contractionCytoskeletonEnergetic principlesHydrolysisCryo-EM structures reveal how phosphate release from Arp3 weakens actin filament branches formed by Arp2/3 complex
Chavali S, Chou S, Cao W, Pollard T, De La Cruz E, Sindelar C. Cryo-EM structures reveal how phosphate release from Arp3 weakens actin filament branches formed by Arp2/3 complex. Nature Communications 2024, 15: 2059. PMID: 38448439, PMCID: PMC10918085, DOI: 10.1038/s41467-024-46179-x.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActin-Related Protein 2-3 ComplexActinsCryoelectron MicroscopyCytoskeletonPhosphatesConceptsArp2/3 complexActin filamentsCryo-EM structureMother filamentDaughter filamentArp2/3 complex nucleates branched actin filamentsActin filament branchingBranched actin filamentsDissociation of PiADP-PiFilament branchingOrganelle movementADP stateBranch junctionsArp3A-resolutionActinArp2/3ADP-BeFxFilamentsADPPhosphate releaseFilament mechanismArp2OrganellesToxoplasma gondii actin filaments are tuned for rapid disassembly and turnover
Hvorecny K, Sladewski T, De La Cruz E, Kollman J, Heaslip A. Toxoplasma gondii actin filaments are tuned for rapid disassembly and turnover. Nature Communications 2024, 15: 1840. PMID: 38418447, PMCID: PMC10902351, DOI: 10.1038/s41467-024-46111-3.Peer-Reviewed Original ResearchConceptsActin filamentsDynamic properties of actin filamentsProperties of actin filamentsCytoskeletal protein actinFilamentous actin networkSkeletal muscle actinCryo-EM structureIn vitro assemblyOrganelle inheritanceD-loopActin networkNucleotide exchangeLive cell imagingProteins actinSkeletal actinConserved structureEvolutionary changesActinApicomplexan parasitesAssembly contactsIntracellular parasitesMonomer dissociationApicomplexanFilamentsBiophysical propertiesDistinct functional constraints driving conservation of the cofilin N-terminal regulatory tail
Sexton J, Potchernikov T, Bibeau J, Casanova-Sepúlveda G, Cao W, Lou H, Boggon T, De La Cruz E, Turk B. Distinct functional constraints driving conservation of the cofilin N-terminal regulatory tail. Nature Communications 2024, 15: 1426. PMID: 38365893, PMCID: PMC10873347, DOI: 10.1038/s41467-024-45878-9.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActin Depolymerizing FactorsActinsCofilin 1HumansLim KinasesPhosphorylationSaccharomyces cerevisiaeConceptsN-terminal regionActin bindingSequence requirementsLIM kinaseAnalysis of individual variantsInactivates cofilinS. cerevisiaeRegulatory tailFamily proteinsActin depolymerizationPhosphorylation sitesKinase recognitionSequence variantsInhibitory phosphorylationCofilinN-terminusIndividual variantsFunctional constraintsActinDisordered sequencesPhosphorylationSequenceBiochemical analysisSequence constraintsKinase
2023
Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton
Amiri S, Muresan C, Shang X, Huet-Calderwood C, Schwartz M, Calderwood D, Murrell M. Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton. Nature Communications 2023, 14: 8011. PMID: 38049429, PMCID: PMC10695988, DOI: 10.1038/s41467-023-43612-5.Peer-Reviewed Original ResearchConceptsF-actin architectureStress fibersCortical actinActin cytoskeletonMolecular tension sensorsF-actin stress fibersF-actin cytoskeletonFilamentous actin cytoskeletonMechanical forcesTension sensorCell divisionCytoskeletonCell migrationExtracellular matrixMyosin inhibitionActinDirection of stretchCellsCell axisUniaxial stretchStretchFRETDifferential regulation of hair cell actin cytoskeleton mediated by SRF and MRTFB
Zhou L, Jin C, Wang W, Song L, Shin J, Du T, Wu H. Differential regulation of hair cell actin cytoskeleton mediated by SRF and MRTFB. ELife 2023, 12: e90155. PMID: 37982489, PMCID: PMC10703445, DOI: 10.7554/elife.90155.Peer-Reviewed Original ResearchConceptsActin cytoskeletonRegulation of actin cytoskeletonMRTF-SRF pathwayModulating actin dynamicsCell actin cytoskeletonCuticular plateActin cytoskeleton organizationActin cytoskeleton activityTranscriptional regulation mechanismRNA-seq analysisF-actin intensityHair cell developmentProfiles of genesActin dynamicsCytoskeleton organizationTranscriptional regulationF-actinCalponin 2Cytoskeleton activityHair bundle morphologyTranscriptome analysisDifferential regulationCell developmentCell-specific deletionCytoskeletonForce redistribution in clathrin-mediated endocytosis revealed by coiled-coil force sensors
Ren Y, Yang J, Fujita B, Jin H, Zhang Y, Berro J. Force redistribution in clathrin-mediated endocytosis revealed by coiled-coil force sensors. Science Advances 2023, 9: eadi1535. PMID: 37831774, PMCID: PMC10575576, DOI: 10.1126/sciadv.adi1535.Peer-Reviewed Original ResearchConceptsActin cytoskeletonPlasma membraneHuntingtin Interacting Protein 1Clathrin-mediated endocytosisCountless cellular processesEndocytic machineryCellular processesClathrin latticesProtein condensationCytoskeletonEnd4pProtein 1Membrane deformationPiconewton forcesEndocytosisVivo force measurementsMembranePiconewtonsClathrinMachineryProteinCoatMolecular scaleCell protrusions and contractions generate long-range membrane tension propagation
De Belly H, Yan S, Borja da Rocha H, Ichbiah S, Town J, Zager P, Estrada D, Meyer K, Turlier H, Bustamante C, Weiner O. Cell protrusions and contractions generate long-range membrane tension propagation. Cell 2023, 186: 3049-3061.e15. PMID: 37311454, PMCID: PMC10330871, DOI: 10.1016/j.cell.2023.05.014.Peer-Reviewed Original ResearchConceptsActomyosin contractionPropagation of membrane tensionDual-trap optical tweezersMembrane tensionActin-driven protrusionsActin-based protrusionsCell membraneOptical tweezersActin cortexCell protrusionsCell polarityMembrane flowCell physiologyTension propagationActomyosinTension transmissionCellsMembraneMechanical forcesPropagationProtrusionTweezersActinPolarizationCryo-electron tomography of intact cardiac muscle reveals myosin binding protein-C linking myosin and actin filaments
Huang X, Torre I, Chiappi M, Yin Z, Vydyanath A, Cao S, Raschdorf O, Beeby M, Quigley B, de Tombe P, Liu J, Morris E, Luther P. Cryo-electron tomography of intact cardiac muscle reveals myosin binding protein-C linking myosin and actin filaments. Journal Of Muscle Research And Cell Motility 2023, 44: 165-178. PMID: 37115473, PMCID: PMC10542292, DOI: 10.1007/s10974-023-09647-3.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActinsAnimalsElectron Microscope TomographyMammalsMyocardiumMyosinsRatsConceptsMyBP-CMyosin-binding protein CCryo-electron tomographyStripes 4Binding protein CRod-shaped proteinN-terminal domainC-terminal regionCardiac MyBP-CActin filamentsAccessory proteinsCentral domainMyosin headsSubtomogram averagingActinMyosinTokuyasu cryosectionsProtein CCardiac muscleFilamentsProteinStripesC-zoneDependent fashionA-bandMembrane tension induces F-actin reorganization and flow in a biomimetic model cortex
Sakamoto R, Banerjee D, Yadav V, Chen S, Gardel M, Sykes C, Banerjee S, Murrell M. Membrane tension induces F-actin reorganization and flow in a biomimetic model cortex. Communications Biology 2023, 6: 325. PMID: 36973388, PMCID: PMC10043271, DOI: 10.1038/s42003-023-04684-7.Peer-Reviewed Original ResearchConceptsF-actin reorganizationMechanical stressCell cortexBiochemical regulationCell shapeActomyosin cortexPhysical behaviorCell polarizationMembrane tensionCell migrationEssential physical behaviorPore openingSpatial assemblyDrive changesMembraneRelative rolesStressActinRegulationDiverse behaviorsRoleAssemblyTwist response of actin filaments
Bibeau J, Pandit N, Gray S, Nejad N, Sindelar C, Cao W, De La Cruz E. Twist response of actin filaments. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2208536120. PMID: 36656858, PMCID: PMC9942836, DOI: 10.1073/pnas.2208536120.Peer-Reviewed Original Research
2022
F-actin architecture determines constraints on myosin thick filament motion
Muresan C, Sun Z, Yadav V, Tabatabai A, Lanier L, Kim J, Kim T, Murrell M. F-actin architecture determines constraints on myosin thick filament motion. Nature Communications 2022, 13: 7008. PMID: 36385016, PMCID: PMC9669029, DOI: 10.1038/s41467-022-34715-6.Peer-Reviewed Original ResearchIn Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles.
Chen S, Sun Z, Murrell M. In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles. Journal Of Visualized Experiments 2022 PMID: 36094272, DOI: 10.3791/64026.Peer-Reviewed Original ResearchConceptsGiant unilamellar vesiclesCytoskeleton networkLipid dropletsCell‐mimicking systemUnilamellar vesiclesActin cytoskeletonVitro reconstitutionGenetic regulationActin networkBiochemical regulationSynthetic biologyCellular activitiesLive cellsMixture of proteinsActin polymersLipid componentsVesiclesRegulationReconstitutionCellsCytoskeletonCell deformationMachineryBiologyQuantitative insightsControl of Synapse Structure and Function by Actin and Its Regulators
Gentile JE, Carrizales MG, Koleske AJ. Control of Synapse Structure and Function by Actin and Its Regulators. Cells 2022, 11: 603. PMID: 35203254, PMCID: PMC8869895, DOI: 10.3390/cells11040603.Peer-Reviewed Original ResearchConceptsActin poolsOrganization of proteinsSynaptic actinOrganization of actinDisease risk genesKey neuronal functionsPost-synaptic compartmentsActin regulatorsDynamic regulationActin filamentsWhole-exome sequencingRisk genesIon channelsGenetic variantsActinRegulatorNeuronal functionSynapse structureExome sequencingPostsynaptic dendritic spinesKey functionsSpecialized junctionsGenesPresynaptic axon terminalsAxon terminalsDaam2 Regulates Myelin Structure and the Oligodendrocyte Actin Cytoskeleton through Rac1 and Gelsolin
Cristobal C, Wang C, Zuo Z, Smith J, Lindeke-Myers A, Bellen H, Lee H. Daam2 Regulates Myelin Structure and the Oligodendrocyte Actin Cytoskeleton through Rac1 and Gelsolin. Journal Of Neuroscience 2022, 42: 1679-1691. PMID: 35101966, PMCID: PMC8896627, DOI: 10.1523/jneurosci.1517-21.2022.Peer-Reviewed Original ResearchConceptsGelsolin levelsOL differentiationMyelin sheathCNS functionMorphogenesis 2Motor coordination deficitsActin cytoskeletonWhite matter diseaseMyelin structureConditional knockout miceWhite matter developmentMyelin compactionMyelin decompactionNeuronal healthCKO miceCoordination deficitsFunctional myelinCompact myelin sheathKnockout miceWhite matterPostnatal developmentProper myelin formationOligodendrocytesMyelin formationOL cultures
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply