2025
The worldview of Akkermansia muciniphila, a bibliometric analysis
Zhang Z, Wang J, Dang S, Liu X, Zhang Y, Zhang H. The worldview of Akkermansia muciniphila, a bibliometric analysis. Frontiers In Microbiology 2025, 16: 1500893. PMID: 40104597, PMCID: PMC11913835, DOI: 10.3389/fmicb.2025.1500893.Peer-Reviewed Original Research
2024
Pharmacological management of pediatric metabolic dysfunction‐associated steatotic liver disease
Jaoudeh R, Hartmann P, Olson O, Gupta O, Kumar S, Ibrahim S, Fawaz R, Aqul A, Hassan S. Pharmacological management of pediatric metabolic dysfunction‐associated steatotic liver disease. Journal Of Pediatric Gastroenterology And Nutrition 2024, 80: 14-24. PMID: 39526564, DOI: 10.1002/jpn3.12402.Peer-Reviewed Original ResearchGLP-1RABody mass indexLiver diseasePediatric patientsPediatric obesityEfficacy of GLP-1RADisease progressionGlucagon-like peptide-1 receptor agonistsSteatotic liver diseaseManagement of pediatric patientsPeptide-1 receptor agonistsClinical management of pediatric patientsAdverse liver outcomesInduce weight lossLong-term efficacyHepatic manifestation of obesityLiver enzyme levelsAlternative therapeutic strategiesHalting disease progressionManifestation of obesityNonalcoholic fatty liver diseaseChildhood obesity ratesFatty liver diseaseReceptor agonistsLiver transplantationIntegrative multiomic analysis identifies distinct molecular subtypes of NAFLD in a Chinese population
Ding J, Liu H, Zhang X, Zhao N, Peng Y, Shi J, Chen J, Chi X, Li L, Zhang M, Liu W, Zhang L, Ouyang J, Yuan Q, Liao M, Tan Y, Li M, Xu Z, Tang W, Xie C, Li Y, Pan Q, Xu Y, Cai S, Byrne C, Targher G, Ouyang X, Zhang L, Jiang Z, Zheng M, Sun F, Chai J. Integrative multiomic analysis identifies distinct molecular subtypes of NAFLD in a Chinese population. Science Translational Medicine 2024, 16: eadh9940. PMID: 39504356, DOI: 10.1126/scitranslmed.adh9940.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseWhole-genome sequencingHepatocellular carcinomaMolecular subtypesLiver cirrhosisChinese cohort of patientsInfiltration of M1Risk of liver cirrhosisSerum metabolic analysisClinical diagnosisSubtype of nonalcoholic fatty liver diseaseCohort of patientsDevelopment of liver cirrhosisHepatocellular carcinoma developmentIntegrative multiomic analysisHealth care burdenFatty liver diseaseExpression of CYP1A2Urine specimensTreatment strategiesChinese cohortImpaired outcomeM2 macrophagesIntegrative multiomicsLiver diseaseDiagnosis and Management of Lean Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Systematic Review
Njei B, Ameyaw P, Al-Ajlouni Y, Njei L, Boateng S. Diagnosis and Management of Lean Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Systematic Review. Cureus 2024, 16: e71451. PMID: 39544615, PMCID: PMC11560387, DOI: 10.7759/cureus.71451.Peer-Reviewed Original ResearchInternational Prospective Register of Systematic ReviewsSystematic reviewProspective Register of Systematic ReviewsLiver diseaseInternational Prospective RegisterPreferred Reporting ItemsFatty liver diseasePeer-reviewed studiesEnhance careSystematic literature searchSteatotic liver diseaseLifestyle changesReporting ItemsA systematic reviewIncreased clinical awarenessPersonalized therapeutic approachesNonalcoholic fatty liver diseaseLiterature searchNonobese individualsAdvanced imaging techniquesClinical awarenessPatient groupPharmacological treatmentMetabolic factorsTargeted treatmentGlucagon promotes increased hepatic mitochondrial oxidation and pyruvate carboxylase flux in humans with fatty liver disease
Petersen K, Dufour S, Mehal W, Shulman G. Glucagon promotes increased hepatic mitochondrial oxidation and pyruvate carboxylase flux in humans with fatty liver disease. Cell Metabolism 2024, 36: 2359-2366.e3. PMID: 39197461, PMCID: PMC11612994, DOI: 10.1016/j.cmet.2024.07.023.Peer-Reviewed Original ResearchCarbon monoxide-loaded red blood cells ameliorate metabolic dysfunction-associated steatohepatitis progression via enhancing AMP-activated protein kinase activity and inhibiting Kupffer cell activation
Yanagisawa H, Maeda H, Noguchi I, Tanaka M, Wada N, Nagasaki T, Kobayashi K, Kanazawa G, Taguchi K, Chuang V, Sakai H, Nakashima H, Kinoshita M, Kitagishi H, Iwakiri Y, Sasaki Y, Tanaka Y, Otagiri M, Watanabe H, Maruyama T. Carbon monoxide-loaded red blood cells ameliorate metabolic dysfunction-associated steatohepatitis progression via enhancing AMP-activated protein kinase activity and inhibiting Kupffer cell activation. Redox Biology 2024, 76: 103314. PMID: 39163766, PMCID: PMC11381851, DOI: 10.1016/j.redox.2024.103314.Peer-Reviewed Original ResearchAMP-activated protein kinaseKupffer cell activationHeme oxygenase-1Red blood cellsInhibit Kupffer cell activationLiver heme oxygenase-1Suppress Kupffer cell activationCell activationLiver regenerationModel miceBlood cellsFat accumulationActivating AMP-activated protein kinaseAMP-activated protein kinase activationImpaired liver regenerationMethionine-choline deficient dietNonalcoholic fatty liver diseaseRestore liver regenerationFatty liver diseaseReceptor inductionHealthy miceProtein kinase activityPromoting fatty acid oxidationMouse modelLiver diseaseLiver epigenomic signature associated with chronic oxidative stress in a mouse model of glutathione deficiency
Hong S, Yu X, Zhu Y, Chen Y. Liver epigenomic signature associated with chronic oxidative stress in a mouse model of glutathione deficiency. Chemico-Biological Interactions 2024, 398: 111093. PMID: 38830566, PMCID: PMC11223951, DOI: 10.1016/j.cbi.2024.111093.Peer-Reviewed Original ResearchS-adenosyl methionineGene promoterArray-based DNA methylation profilingPeripheral blood cellsFatty liver diseaseDNA methylation profilesDNA methylation statusMethyl donor S-adenosyl methionineGene promoter regionFunctional enrichment analysisMethylation enrichmentMouse modelOxidative stressLiver epigenomeEpigenomic changesIn vivo interplayMethylation profilesPromoter regionEpigenetic regulationEpigenomic signaturesEpigenetic mechanismsLipid homeostasisBlood cellsEnrichment analysisCellular survivalRNA modifications in the progression of liver diseases: from fatty liver to cancer
Li S, Mehal W, Ouyang X. RNA modifications in the progression of liver diseases: from fatty liver to cancer. Science China Life Sciences 2024, 67: 2105-2119. PMID: 38809498, PMCID: PMC11545962, DOI: 10.1007/s11427-023-2494-x.Peer-Reviewed Original ResearchRNA modificationsRNA metabolismRNA speciesNon-alcoholic fatty liver diseaseN1-methyladenosineCellular functionsN6-methyladenosineGene expressionRNANon-alcoholic steatohepatitisFatty liver to non-alcoholic steatohepatitisM6AHepatocellular carcinomaGlobal health concernFatty liver diseaseLiver diseaseM5CHigher risk of metabolic syndromePseudouridineAssociated with higher risk of metabolic syndromePathological conditionsRisk of metabolic syndrome-methyladenosineGenesProgression of liver diseaseDeveloping deep learning-based strategies to predict the risk of hepatocellular carcinoma among patients with nonalcoholic fatty liver disease from electronic health records
Li Z, Lan L, Zhou Y, Li R, Chavin K, Xu H, Li L, Shih D, Zheng W. Developing deep learning-based strategies to predict the risk of hepatocellular carcinoma among patients with nonalcoholic fatty liver disease from electronic health records. Journal Of Biomedical Informatics 2024, 152: 104626. PMID: 38521180, DOI: 10.1016/j.jbi.2024.104626.Peer-Reviewed Original ResearchDeep learning modelsElectronic health recordsHCC risk predictionHealth recordsTime-varying covariatesLearning modelsElectronic health record dataRisk predictionHealth record dataAccuracy of deep learning modelsDeep learning-based strategyCovariate imbalanceDisease prediction tasksLearning-based strategyDeep learning performanceDisease risk predictionEHR databaseClassification problemLength of follow-upTransfer learningFatty liver diseasePrediction taskCarcinoma riskModel trainingRecord dataDietary pyruvate targets cytosolic phospholipase A2 to mitigate inflammation and obesity in mice
Hasan S, Ghani N, Zhao X, Good J, Huang A, Wrona H, Liu J, Liu C. Dietary pyruvate targets cytosolic phospholipase A2 to mitigate inflammation and obesity in mice. Protein & Cell 2024, 15: 661-685. PMID: 38512816, PMCID: PMC11365557, DOI: 10.1093/procel/pwae014.Peer-Reviewed Original ResearchCytosolic phospholipase A2White adipose tissue inflammationAdipose tissue inflammationTissue inflammationState of chronic low-grade inflammationChronic low-grade inflammationHFD-induced weight gainLow-grade inflammationAttenuation of inflammationMolecular targetsPotential therapeutic optionDevelopment of metabolic disordersProtective effect of pyruvateAdipogenic differentiation in vitroDiet-induced obesityNonalcoholic fatty liver diseaseDifferentiation in vitroDrug affinity responsive target stabilityFatty liver diseasePhospholipase A2Meta-inflammationTherapeutic optionsDrug responseGlobal ablationMultifactorial etiologyAccuracy of blood-based biomarkers for staging liver fibrosis in chronic liver disease: A systematic review supporting the AASLD Practice Guideline
Patel K, Asrani S, Fiel M, Levine D, Leung D, Duarte-Rojo A, Dranoff J, Nayfeh T, Hasan B, Taddei T, Alsawaf Y, Saadi S, Majzoub A, Manolopoulos A, Alzuabi M, Ding J, Sofiyeva N, Murad M, Alsawas M, Rockey D, Sterling R. Accuracy of blood-based biomarkers for staging liver fibrosis in chronic liver disease: A systematic review supporting the AASLD Practice Guideline. Hepatology 2024, 81: 358-379. PMID: 38489517, DOI: 10.1097/hep.0000000000000842.Peer-Reviewed Original ResearchAminotransferase-to-platelet ratio indexChronic liver diseaseNonalcoholic fatty liver diseaseHepatitis B virusBlood-based biomarkersLiver diseaseFIB-4HIV-HCV co-infectionCo-infectionFIB-4 <Alternative to liver biopsyFIB-4 >Pre-test probabilityBlood-based testLiver disease assessmentSystematic reviewStaging liver fibrosisComprehensive search of databasesHIV-HCVFatty liver diseaseProportional odds ratiosAdvanced fibrosisLiver biopsyViral hepatitisB virusReducing brain Aβ burden ameliorates high-fat diet-induced fatty liver disease in APP/PS1 mice
Tsay H, Gan Y, Su Y, Sun Y, Yao H, Chen H, Hsu Y, Hsu J, Wang H, Shie F. Reducing brain Aβ burden ameliorates high-fat diet-induced fatty liver disease in APP/PS1 mice. Biomedicine & Pharmacotherapy 2024, 173: 116404. PMID: 38471275, DOI: 10.1016/j.biopha.2024.116404.Peer-Reviewed Original ResearchAPP/PS1 miceAmeliorate fatty liver diseaseAlzheimer's diseaseAD-like pathologyHFD-induced hyperglycemiaAD-related pathologyExpression of genesFatty liver diseaseFatty acid oxidationHFD-induced fatty liverAD therapyLipid accumulationHigh-fat diet-induced fatty liver diseaseAPP/PS1HFD feedingCharacteristics of microgliaExposure to HFDHepatic lipogenesisLiver diseaseDiet-induced fatty liver diseaseAcid oxidationHepatic lipidsObesity, Growth, Development, Metabolic Disorder, and Insulin Resistance in Pediatrics
Santoro N, Galderisi A, Caprio S. Obesity, Growth, Development, Metabolic Disorder, and Insulin Resistance in Pediatrics. 2024, vol1:608-vol1:616. DOI: 10.1201/9781003437734-70.ChaptersNonalcoholic fatty liver diseaseType 2 diabetesInsulin resistanceAdolescent obesityAssociated with precocious pubertyDevelopment of prediabetesCardiometabolic risk factorsPathogenesis of insulin resistanceFatty liver diseasePrecocious pubertyClinical peculiaritiesPediatric obesityLiver diseaseRisk factorsGlobal health challengeMetabolic disordersObesityFatty liverPathological complicationsPotential mechanismsInsulinHealth challengesChildrenComplicationsDyslipidemiaChapter 6 Clinical diagnosis and evaluation pathway
Lam R, Banini B, Do A, Lim J. Chapter 6 Clinical diagnosis and evaluation pathway. 2024, 77-100. DOI: 10.1016/b978-0-323-99649-5.00003-0.Peer-Reviewed Original Research
2023
The effect of endoscopic gastric plication on portosystemic pressure gradient in patients with nonalcoholic fatty liver disease and compensated advanced chronic liver disease
Jirapinyo P, Thompson C, Garcia-Tsao G, Zucker S, Ryou M. The effect of endoscopic gastric plication on portosystemic pressure gradient in patients with nonalcoholic fatty liver disease and compensated advanced chronic liver disease. Endoscopy 2023, 56: 56-62. PMID: 37532114, DOI: 10.1055/a-2146-8857.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseEndoscopic gastric plicationAdvanced chronic liver diseaseFatty liver diseasePortosystemic pressure gradientChronic liver diseaseLiver diseaseTotal weight lossGastric plicationNoninvasive testsBaseline median body-mass indexMedian body mass indexPercent total weight lossWeight lossProportion of patientsProspective pilot studyBody mass indexLiver stiffness measurementWeight loss proceduresGoal of therapyHepatic decompensationSecondary outcomesPrimary outcomeMass indexPatientsThe evil relationship between liver fibrosis and cardiovascular disease in metabolic dysfunction-associated fatty liver disease (MAFLD): Looking for the culprit
Fabris L, Campello E, Cadamuro M, Simioni P. The evil relationship between liver fibrosis and cardiovascular disease in metabolic dysfunction-associated fatty liver disease (MAFLD): Looking for the culprit. Biochimica Et Biophysica Acta (BBA) - Molecular Basis Of Disease 2023, 1870: 166763. PMID: 37951510, DOI: 10.1016/j.bbadis.2023.166763.Peer-Reviewed Original ResearchMetabolic dysfunction-associated fatty liver diseaseFatty liver diseaseCardiovascular diseaseLiver diseaseInsulin resistanceLiver fibrosisMajor public health problemPublic health problemMAFLD patientsMAFLD progressionCardiometabolic riskMetabolic syndromeOverall mortalityHepatic repairHepatic fibrogenesisHepatic componentGeneral populationTherapeutic targetingHealth problemsTranslational potentialFibrosisDiseaseGenetic factorsRisk profilingStrongest predictorFood Insecurity and Pediatric Nonalcoholic Fatty Liver Disease Severity
Orkin S, Zhao X, Setchell K, Carr E, Arce-Clachar A, Bramlage K, Huang R, Fei L, Beck A, Fawaz R, Valentino P, Xanthakos S, Mouzaki M. Food Insecurity and Pediatric Nonalcoholic Fatty Liver Disease Severity. The Journal Of Pediatrics 2023, 265: 113818. PMID: 37931698, PMCID: PMC11108653, DOI: 10.1016/j.jpeds.2023.113818.Peer-Reviewed Original ResearchNonalcoholic fatty liver diseaseHousehold Food Security Survey ModuleFood Security Survey ModuleNonalcoholic fatty liver disease severityPediatric nonalcoholic fatty liver diseasePossible pathophysiologic linkLiver disease severityFatty liver diseaseBMI z-scoreCross-sectional studyFood-secure counterpartsYears of ageSurvey ModulePathophysiologic linkWarrants further explorationHistologic severityLiver diseasePathophysiologic mechanismsFood insecurityMean ageFood insecurity statusEarly presentationDisease severityZ-scorePatientsObesity, Growth, Development, Metabolic Disorder, and Insulin Resistance in Pediatrics
Santoro N, Galderisi A, Caprio S. Obesity, Growth, Development, Metabolic Disorder, and Insulin Resistance in Pediatrics. 2023, 608-616. DOI: 10.1201/9781003437673-70.Peer-Reviewed Original ResearchNonalcoholic fatty liver diseaseType 2 diabetesInsulin resistanceAdolescent obesityCardiometabolic risk factorsMajor global health challengeFatty liver diseaseDevelopment of prediabetesGlobal health challengeClinical peculiaritiesFatty liverLiver diseasePediatric obesityRisk factorsPrecocious pubertyMetabolic disordersPathological complicationsObesityHealth challengesPsychosocial conditionsPotential mechanismsDiabetesEarly ageChildrenDyslipidemiaThe PNPLA3 I148M variant increases ketogenesis and decreases hepatic de novo lipogenesis and mitochondrial function in humans
Luukkonen P, Porthan K, Ahlholm N, Rosqvist F, Dufour S, Zhang X, Lehtimäki T, Seppänen W, Orho-Melander M, Hodson L, Petersen K, Shulman G, Yki-Järvinen H. The PNPLA3 I148M variant increases ketogenesis and decreases hepatic de novo lipogenesis and mitochondrial function in humans. Cell Metabolism 2023, 35: 1887-1896.e5. PMID: 37909034, DOI: 10.1016/j.cmet.2023.10.008.Peer-Reviewed Original ResearchConceptsDe novo lipogenesisHepatic de novo lipogenesisPlasma β-hydroxybutyrate concentrationsΒ-hydroxybutyrate concentrationsLiver diseaseNovo lipogenesisPNPLA3 I148M variantHepatic mitochondrial redox stateMajor genetic risk factorI148M variantFatty liver diseaseGenetic risk factorsHepatic mitochondrial dysfunctionKetogenic dietMixed mealRisk factorsHepatic metabolismHomozygous carriersM carriersMitochondrial dysfunctionCitrate synthase fluxM variantKetogenesisMitochondrial redox stateMitochondrial functionScreening, Diagnosis, and Staging of Non-Alcoholic Fatty Liver Disease (NAFLD): Application of Society Guidelines to Clinical Practice
Ilagan-Ying Y, Banini B, Do A, Lam R, Lim J. Screening, Diagnosis, and Staging of Non-Alcoholic Fatty Liver Disease (NAFLD): Application of Society Guidelines to Clinical Practice. Current Gastroenterology Reports 2023, 25: 213-224. PMID: 37768417, DOI: 10.1007/s11894-023-00883-8.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsNon-alcoholic fatty liver diseaseNon-invasive testsFatty liver diseaseLiver diseaseCommon chronic liver diseaseNonalcoholic fatty liver diseaseCurrent expert guidelinesHigh-risk patientsChronic liver diseaseSteatotic liver diseaseClinical practice implicationsHepatic decompensationLiver biopsySociety guidelinesSpecialty referralsNovel therapiesExpert guidelinesLiver cancerDisease awarenessObesity epidemicSerum indicesClinical practiceScreening toolDiseaseDiagnosis
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply