2024
Conformational response of αIIbβ3 and αVβ3 integrins to force
Kolasangiani R, Farzanian K, Chen Y, Schwartz M, Bidone T. Conformational response of αIIbβ3 and αVβ3 integrins to force. Structure 2024, 33: 289-299.e4. PMID: 39706199, DOI: 10.1016/j.str.2024.11.016.Peer-Reviewed Original ResearchConceptsBind similar ligandsExtended conformationAvb3 integrinCellular mechanosensingAdhesion receptorsSubunit domainsCell mechanosensingPlasma membraneIntegrinMechanical signalsAll-atom simulationsSingle molecule measurementsConformational responseSubunitMechanosensingStructural dynamicsSolid tissuesCellsMolecule measurementsConformationAvb3Circulating plateletsEquivalent levelMembraneControversy in mechanotransduction – the role of endothelial cell–cell junctions in fluid shear stress sensing
X S, Aitken C, Mehta V, Tardajos-Ayllon B, Serbanovic-Canic J, Zhu J, Miao B, Tzima E, Evans P, Fang Y, Schwartz M. Controversy in mechanotransduction – the role of endothelial cell–cell junctions in fluid shear stress sensing. Journal Of Cell Science 2024, 137: jcs262348. PMID: 39143856, PMCID: PMC11423816, DOI: 10.1242/jcs.262348.Peer-Reviewed Original ResearchShear stress sensingFluid shear stressFluid flowCell-cell contactShear stressCell-cell adhesionStress sensingCell-cell junctionsEndothelial cell-cell junctionsEC alignmentRegulates vascular developmentAdhesion receptorsCell typesEndothelial cellsFlowSingle cellsVascular developmentShearAdhesionContact
2023
Author Correction: Molecular basis for integrin adhesion receptor binding to p21-activated kinase 4 (PAK4)
Ha B, Yigit S, Natarajan N, Morse E, Calderwood D, Boggon T. Author Correction: Molecular basis for integrin adhesion receptor binding to p21-activated kinase 4 (PAK4). Communications Biology 2023, 6: 794. PMID: 37524913, PMCID: PMC10390574, DOI: 10.1038/s42003-023-05176-4.Peer-Reviewed Original ResearchUse of Ecto-Tagged Integrins to Monitor Integrin Exocytosis and Endocytosis
Huet-Calderwood C, Rivera-Molina F, Toomre D, Calderwood D. Use of Ecto-Tagged Integrins to Monitor Integrin Exocytosis and Endocytosis. Methods In Molecular Biology 2023, 2608: 17-38. PMID: 36653699, PMCID: PMC9999384, DOI: 10.1007/978-1-0716-2887-4_2.ChaptersConceptsΒ1 integrinTotal internal reflection fluorescence microscopyNormal cell adhesionIntegrin adhesion receptorsReflection fluorescence microscopyAdhesion receptorsCell adhesionEndocytosisFluorescence microscopyExocytosisIntegrinsCellsHaloTagPHluorinIntracellular labelingEctoPhotobleachingTagsReceptorsChaseFluorescentAdhesionLabelingMigration
2022
Molecular basis for integrin adhesion receptor binding to p21-activated kinase 4 (PAK4)
Ha B, Yigit S, Natarajan N, Morse E, Calderwood D, Boggon T. Molecular basis for integrin adhesion receptor binding to p21-activated kinase 4 (PAK4). Communications Biology 2022, 5: 1257. PMID: 36385162, PMCID: PMC9669019, DOI: 10.1038/s42003-022-04157-3.Peer-Reviewed Original ResearchConceptsP21-activated kinase 4Integrin adhesion receptorsMolecular basisAdhesion receptorsIntegrin β5Potential cellular rolesIntegrin β tailsKinase 4Membrane-proximal halfSubstrate-binding grooveSubstrate-binding siteSite-directed mutagenesisCellular rolesPhosphoacceptor sitesΒ tailExtracellular ligandsCytoplasmic signalingCytoplasmic tailKinase domainMultiple kinasesIntegrin complexΒ5 integrinsΒ5TailMutagenesis
2020
Differences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding
Kadry YA, Maisuria EM, Huet-Calderwood C, Calderwood DA. Differences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding. Journal Of Biological Chemistry 2020, 295: 11161-11173. PMID: 32546480, PMCID: PMC7415974, DOI: 10.1074/jbc.ra120.013618.Peer-Reviewed Original ResearchConceptsKindlin-3Kindlin-2Focal adhesionsIntegrin cytoplasmic domainTransmembrane adhesion receptorsComparative sequence analysisLive-cell imagingAbility of cellsCytoplasmic domainF3 subdomainsMammalian cellsCytoplasmic componentsExtracellular environmentAdhesion receptorsKindlinSequence analysisIntegrin familySelf-associationIntegrin bindingPhysiological importanceMolecular levelPoint mutationsProteinCellsAdhesionChapter 22: Structural and signaling functions of integrins
Kadry YA, Calderwood DA. Chapter 22: Structural and signaling functions of integrins. Biochimica Et Biophysica Acta (BBA) - Biomembranes 2020, 1862: 183206. PMID: 31991120, PMCID: PMC7063833, DOI: 10.1016/j.bbamem.2020.183206.Peer-Reviewed Original ResearchConceptsFunction of integrinsAbility of integrinsTransmembrane adhesion receptorsNon-redundant functionsDifferent integrin heterodimersExtracellular matrix proteinsComplex structural rearrangementsDiverse downstreamCytoskeletal complexMetazoan lifeExtracellular environmentΒ-subunitAdhesion receptorsIntegrin heterodimersIntegrin familyMatrix proteinsCell adhesionIntegrinsStructural rearrangementsHeterodimersRecent advancesSubunitsSignalingProteinFunction
2017
Novel ecto-tagged integrins reveal their trafficking in live cells
Huet-Calderwood C, Rivera-Molina F, Iwamoto DV, Kromann EB, Toomre D, Calderwood DA. Novel ecto-tagged integrins reveal their trafficking in live cells. Nature Communications 2017, 8: 570. PMID: 28924207, PMCID: PMC5603536, DOI: 10.1038/s41467-017-00646-w.Peer-Reviewed Original ResearchConceptsIntegrin functionΒ1 integrinLive cellsCell surface adhesion receptorsHeterodimeric cell-surface adhesion receptorsIntegrin endocytosisMulticellular organismsNovel powerful toolFocal adhesionsKnockout fibroblastsIntegrin activationAdhesion receptorsExtracellular loopIntegrinsTraffickingMajor mysteriesCellsTagsAdhesionHaloTagEndocytosisPowerful toolExocytosisOrganismsVesicles
2015
Regulation of integrin-mediated adhesions
Iwamoto DV, Calderwood DA. Regulation of integrin-mediated adhesions. Current Opinion In Cell Biology 2015, 36: 41-47. PMID: 26189062, PMCID: PMC4639423, DOI: 10.1016/j.ceb.2015.06.009.Peer-Reviewed Original ResearchConceptsIntegrin-mediated adhesionHeterodimeric transmembrane adhesion receptorsShort cytoplasmic tailTransmembrane adhesion receptorsSpecific intracellular proteinsClustering of integrinsMetazoan developmentActin cytoskeletonExtracellular ligandsCytoplasmic tailIntracellular traffickingExtracellular environmentIntracellular proteinsAdhesion receptorsAdhesive structuresIntegrin receptorsCell membraneRelay signalsIntegrinsEssential roleMechanical forcesCell attachmentAdhesionRecent advancesCytoskeleton
2014
Integrin Cytoplasmic Tail Interactions
Morse EM, Brahme NN, Calderwood DA. Integrin Cytoplasmic Tail Interactions. Biochemistry 2014, 53: 810-820. PMID: 24467163, PMCID: PMC3985435, DOI: 10.1021/bi401596q.Peer-Reviewed Original ResearchConceptsIntegrin-interacting proteinsIntegrin cytoplasmic tailsCell surface adhesion receptorsIntegrin-binding proteinsHeterodimeric cell-surface adhesion receptorsSurface adhesion receptorsExtracellular ligandsMulticellular lifeCytoplasmic tailIntegrin engagementCell motilityExtracellular environmentTransduce chemicalIntegrin activityIntegrin localizationIntracellular proteinsAdhesion receptorsTail interactionsMechanical signalsProteinIntegrinsCellsCytoskeletonLocalizationTraffickingChapter 5 ECM receptors in neuronal structure, synaptic plasticity, and behavior
Kerrisk ME, Cingolani LA, Koleske AJ. Chapter 5 ECM receptors in neuronal structure, synaptic plasticity, and behavior. Progress In Brain Research 2014, 214: 101-131. PMID: 25410355, PMCID: PMC4640673, DOI: 10.1016/b978-0-444-63486-3.00005-0.Peer-Reviewed Original ResearchConceptsSynaptic plasticityNeuronal structuresCentral nervous system developmentForm synapsesNervous system developmentDendritic projectionsSynaptic activityPostsynaptic partnersPostsynaptic cellECM receptorsReceptor activationGuidance moleculesSynapse structureReceptorsStable synapsesExtracellular matrix receptorsNeuronsSynapsesCell adhesion receptorsMatrix receptorsAdhesion receptorsReceptor transitionPreECM compositionECM ligands
2013
Kindlin Binds Migfilin Tandem LIM Domains and Regulates Migfilin Focal Adhesion Localization and Recruitment Dynamics*
Brahme NN, Harburger DS, Kemp-O'Brien K, Stewart R, Raghavan S, Parsons M, Calderwood DA. Kindlin Binds Migfilin Tandem LIM Domains and Regulates Migfilin Focal Adhesion Localization and Recruitment Dynamics*. Journal Of Biological Chemistry 2013, 288: 35604-35616. PMID: 24165133, PMCID: PMC3853305, DOI: 10.1074/jbc.m113.483016.Peer-Reviewed Original ResearchConceptsFocal adhesionsLIM domainsActin cytoskeletonFluorescence resonance energy transferFA localizationActin-rich stress fibersC-terminal LIM domainsLIM domain regionTandem LIM domainsTwo-hybrid screenDomain-containing adaptor proteinFocal adhesion localizationIntegrin-binding proteinsIntegrin adhesion receptorsPulldown assaysAdaptor proteinMigfilinFA formationKindlinRecruitment dynamicsStress fibersKindlin-2Integrin activationIntracellular proteinsAdhesion receptorsPurification and SAXS Analysis of the Integrin Linked Kinase, PINCH, Parvin (IPP) Heterotrimeric Complex
Stiegler AL, Grant TD, Luft JR, Calderwood DA, Snell EH, Boggon TJ. Purification and SAXS Analysis of the Integrin Linked Kinase, PINCH, Parvin (IPP) Heterotrimeric Complex. PLOS ONE 2013, 8: e55591. PMID: 23383235, PMCID: PMC3561323, DOI: 10.1371/journal.pone.0055591.Peer-Reviewed Original ResearchConceptsIPP complexEnsemble optimization methodDetailed purification protocolHeterotrimeric protein complexIntegrin Linked KinaseIntegrin adhesion receptorsInter-domain linkerInter-domain interactionsInter-domain contactsGel filtration analysisΑ-parvinLIM1 domainHuman ILKSmall-angle X-ray scatteringHeterotrimeric complexProtein complexesFocal adhesionsAdhesion receptorsPINCH proteinFirst structural characterizationFiltration analysisPurification protocolConformational restraintsKinaseILK
2012
Zasp regulates integrin activation
Bouaouina M, Jani K, Long JY, Czerniecki S, Morse EM, Ellis SJ, Tanentzapf G, Schöck F, Calderwood DA. Zasp regulates integrin activation. Journal Of Cell Science 2012, 125: 5647-5657. PMID: 22992465, PMCID: PMC3575701, DOI: 10.1242/jcs.103291.Peer-Reviewed Original ResearchConceptsIntegrin activationDomain-containing proteinsExtracellular matrixHeterodimeric adhesion receptorsPDZ motif-containing proteinΑ5β1 integrinMammalian tissue cultureScaffold proteinCytoplasmic tailFirst proteinECM ligandsMuscle contractile machineryΒ-integrinExtracellular domainAdhesion receptorsIntegrin heterodimersTalinConformational changesHigh-affinity bindingEssential processProteinIntegrinsHuman cardiomyopathyZASPTissue cultureFilamin A controls matrix metalloproteinase activity and regulates cell invasion in human fibrosarcoma cells
Baldassarre M, Razinia Z, Brahme NN, Buccione R, Calderwood DA. Filamin A controls matrix metalloproteinase activity and regulates cell invasion in human fibrosarcoma cells. Journal Of Cell Science 2012, 125: 3858-3869. PMID: 22595522, PMCID: PMC3462082, DOI: 10.1242/jcs.104018.Peer-Reviewed Original ResearchMeSH KeywordsActinsCell AdhesionCell Line, TumorCell MovementContractile ProteinsEnzyme ActivationExtracellular MatrixFibrosarcomaFilaminsGene Knockdown TechniquesHumansIntegrinsMatrix Metalloproteinase 14Matrix Metalloproteinase 2Microfilament ProteinsNeoplasm InvasivenessPhenotypeProtein Structure, TertiaryConceptsFilamin AActin cytoskeletonCell invasionActin-binding domainCell surface adhesion proteinsControls cell motilityActin-binding proteinsIntegrin adhesion receptorsRandom cell migrationAbility of cellsArray of intracellularBreast cancer lossSurface adhesion proteinsHuman fibrosarcoma cellsExtracellular matrix degradationMatrix metalloproteinase activityFilamin expressionKnockdown cellsAdhesion proteinsCell motilityMetalloproteinase activityActin filamentsAdhesion receptorsFilaminECM remodeling
2011
Talin and Signaling Through Integrins
Bouaouina M, Harburger DS, Calderwood DA. Talin and Signaling Through Integrins. Methods In Molecular Biology 2011, 757: 325-347. PMID: 21909921, PMCID: PMC5642996, DOI: 10.1007/978-1-61779-166-6_20.Peer-Reviewed Original ResearchConceptsCytoplasmic tailIntegrin activationIntegrin β tailsAbility of integrinsIntegrin cytoplasmic tailsShort cytoplasmic tailIntegrin adhesion receptorsBinding of talinDominant-negative constructMulticellular animalsActin cytoskeletonΒ tailExtracellular ligandsTalin domainTalinCharacterization of interactionsIntracellular signalsAdhesion receptorsCell adhesionIntegrin receptorsCultured cellsExtracellular matrixNegative constructsIntegrin subunitsIntegrinsCell adhesion signaling pathways: First responders to cocaine exposure?
Gourley SL, Taylor JR, Koleske AJ. Cell adhesion signaling pathways: First responders to cocaine exposure? Communicative & Integrative Biology 2011, 4: 30-3. PMID: 21509173, PMCID: PMC3073265, DOI: 10.4161/cib.4.1.14083.Peer-Reviewed Original ResearchCocaine exposureDendritic spinesDendritic spine structureChronic drug exposureCertain brain regionsExpression/functionDrug exposurePsychomotor sensitizationPsychostimulant exposureBrain regionsFirst respondersNeuronal shapeSpine structureHuman brainRespondersExposureSpineTyrosine kinaseRecent findingsNonreceptor tyrosine kinaseCell adhesion receptorsAdhesion receptorsDevelopmental periodAdhesion factorsCell adhesion factorsCell adhesion signaling pathways
Gourley S, Taylor J, Koleske A. Cell adhesion signaling pathways. Communicative & Integrative Biology 2011, 4: 30-33. DOI: 10.4161/cib.14083.Peer-Reviewed Original ResearchDendritic spinesDendritic spine structureChronic drug exposureCertain brain regionsExpression/functionDrug exposureCocaine exposurePsychomotor sensitizationPsychostimulant exposureBrain regionsNeuronal shapeSpine structureHuman brainExposureSpineTyrosine kinaseRecent findingsNonreceptor tyrosine kinaseCell adhesion receptorsAdhesion receptorsDevelopmental periodAdhesion factorsCell adhesion factorsFirst respondersCytoskeletal effectors
2010
Mechanisms of Synapse and Dendrite Maintenance and Their Disruption in Psychiatric and Neurodegenerative Disorders
Lin YC, Koleske AJ. Mechanisms of Synapse and Dendrite Maintenance and Their Disruption in Psychiatric and Neurodegenerative Disorders. Annual Review Of Neuroscience 2010, 33: 349-378. PMID: 20367247, PMCID: PMC3063389, DOI: 10.1146/annurev-neuro-060909-153204.Peer-Reviewed Original Research
2009
Structural basis of competition between PINCH1 and PINCH2 for binding to the ankyrin repeat domain of integrin-linked kinase
Chiswell BP, Stiegler AL, Razinia Z, Nalibotski E, Boggon TJ, Calderwood DA. Structural basis of competition between PINCH1 and PINCH2 for binding to the ankyrin repeat domain of integrin-linked kinase. Journal Of Structural Biology 2009, 170: 157-163. PMID: 19963065, PMCID: PMC2841223, DOI: 10.1016/j.jsb.2009.12.002.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid SequenceAnkyrin RepeatBinding, CompetitiveCrystallizationDNA-Binding ProteinsGene Expression RegulationLIM Domain ProteinsMembrane ProteinsModels, MolecularMolecular Sequence DataMutagenesisProtein BindingProtein Serine-Threonine KinasesSignal TransductionConceptsIntegrin-linked kinaseAnkyrin repeat domainLIM1 domainIPP complexIsoform-specific functionsIntegrin adhesion receptorsDifferent cellular responsesPINCH2Repeat domainPINCH1Point mutagenesisStructural basisAdhesion receptorsCellular responsesAlters localizationDifferential regulationSame binding siteDirect competitionBinding sitesKinaseDomainAnkyrinParvinMutagenesisMammals
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply